Graphing in STANDARD FORM – $f(x) = ax^2 + bx + c$

EXAMPLE - Graph the function: $f(x) = 4x^2 - 8x + 1$

To find the axis of symmetry:

$$x = -\frac{b}{2a} = ----=$$

To find the vertex, plug _____ back into the equation. $f(\underline{}) = 4()^2 - 8() + 1 =$

$$f(\underline{\hspace{1cm}}) = 4(\phantom{\hspace{1cm}})^2 - 8(\phantom{\hspace{1cm}}) + 1 =$$

Key Features:

a = _____ b = ____ c = ____

The parabola will open UP or DOWN

The parabola has a MAX or MIN

The axis of symmetry at x =

Vertex at (,

y-intercept = (,

point = (,

YOU TRY - Graph the function: $f(x) = -\frac{1}{2}x^2 + 2x - 1$

Key Features:

a = _____ b = ____ c = ____

The parabola will open UP or DOWN

The parabola has a MAX or MIN

The axis of symmetry at x =_____

Vertex at (,)

y-intercept = (,

point = (,

