Exploration: Properties of Exponents

Name:	

I. Multiplication Property of Exponents

Complete the table below and answer the questions that follow.

Product	Expanded Form	Exponential Form
$3^2 \cdot 3^3$	$(3\cdot 3)\cdot (3\cdot 3\cdot 3)$	3^5
$2^3 \cdot 2^3$		
$2^5 \cdot 2^4$		
$4^7 \cdot 4^1$		
$x^4 \cdot x^2$		

Compare the original product in the first column to the exponential form you found in the third column. What pattern do you see?

Use the pattern to create a general rule for the multiplication property of exponents.

$$x^a \cdot x^b =$$

Test your rule on the following expressions to check that it works:

- a) $4^3 \cdot 4^2$
- b) $5^2 \cdot 5^4$

II. **Power Property of Exponents**

Complete the table below and answer the questions that follow.

Power	Expanded Form	Exponential Form
$(3^2)^3$	$(3^2) \cdot (3^2) \cdot (3^2) =$ $(3 \cdot 3) \cdot (3 \cdot 3) \cdot (3 \cdot 3)$	36
$(2^3)^4$		
$(4^5)^2$		
$(x^7)^3$		
$(2\cdot 3)^2$	$(2 \cdot 3) \cdot (2 \cdot 3) \cdot (2 \cdot 3) =$ $(2 \cdot 2 \cdot 2) \cdot (3 \cdot 3 \cdot 3)$	$2^3 \cdot 3^3$
$(3\cdot 5)^3$		
$(xy)^3$		

Compare the original power in the first column to the exponential form you found in the third column. What patterns do you see?

Use the pattern to create a general rule for the power properties of exponents.

$$(x^a)^b = \underline{\hspace{1cm}}$$

$$(xy)^b = \underline{\hspace{1cm}}$$

Test your rule on the following expressions to check that it works:

a)
$$(4^3)^4$$

b)
$$(5 \cdot 2)^2$$
 Copyright 2015 S 2 TEM Centers SC

III. Division Property of Exponents

Complete the table below and answer the questions that follow.

Division	Expanded Form	Exponential Form
$\frac{3^5}{3^2}$	$\frac{3\cdot 3\cdot 3\cdot 3\cdot 3}{3\cdot 3} = 3\cdot 3\cdot 3$	3^3
$\frac{2^4}{2^1}$		
$\frac{5^{12}}{5^8}$		
$\frac{4^7}{4^5}$		
$\frac{x^3}{x^1}$		

Compare the original division in the first column to the exponential form you found in the third column. What patterns do you see?

Use the pattern to create a general rule for the power properties of exponents.

$$\frac{x^a}{x^b} =$$

Test your rule on the following expressions to check that it works:

a)
$$\frac{x^6}{x^3}$$

b)
$$\frac{2^9}{2^7}$$

IV. Zero and Negative Exponents

Use the property of division from part III to show why $oldsymbol{x^0}=\mathbf{1}$ is true.

Hint: What is $\frac{2^4}{2^4}$?

Use the property of division from part III to make a **conjecture** about negative exponents.

Hint: Write each of the following divisions using expanded form then use your rule from part III. Look for patterns in your answers.

- a) $\frac{3^2}{3^4}$
- b) $\frac{2}{2^5}$
- c) $\frac{x^3}{x^6}$

Practice: Properties of Exponents Name: _____

Use the properties of exponents to rewrite each expression in as few terms possible.

$$(1) 3^4 =$$

$$(4) \ 3^{-2} =$$

(7)
$$\frac{1}{2^{-3}}$$
 =

$$(2) (-2)^3 =$$

$$(5) (-2)^{-3} =$$

$$(8) \left(\frac{2}{3}\right)^{-3} =$$

$$(3) (-4)^4 =$$

(6)
$$\left(\frac{3}{4}\right)^3 =$$

$$(9) (-25)^0 =$$