Monday/Tuesday

Name: \qquad Date: \qquad Period: \qquad
Completing the Square
Do Now: Complete \#1-3 by multiplying. Then answer the question using complete sentences.

1. $(x+3)^{2}=(x+3)(x+3)=$ \qquad
2. $(x-5)^{2}=(x-5)(x-5)=$ \qquad
3. $(x+10)^{2}=(x+10)(x+10)=$ \qquad

Explain why $(x+6)^{2}$ is not equal to $x^{2}+36$

So, what is:

$$
x^{2}-12 x+36=\left(x_{--}--\right)^{2}
$$

Completing the Square

Are the following Trinomials perfect squares?
1.

$$
a^{2}+7 a+49
$$

2.

$$
b^{2}-8 b+16
$$

3.

$$
c^{2}-16 c-64
$$

Can you force them into being perfect squares? How would you change the bolded terms?
1.

$$
a^{2}+7 a+49
$$

2.

$$
c^{2}-16 c-64
$$

Wednesday

Name: \qquad Date: \qquad Period: \qquad

> Completing the Square

Do Now: Fill in the blank with the correct term to make it a perfect square trinomial like
$(a+b)^{2}=a^{2}+2 a b+b^{2}$
1.

$$
x^{2}+6 x+
$$

\qquad
2.

$$
x^{2}-24 x+\ldots------
$$

3.

$$
x^{2}+20 x+-------
$$

Activity: Explain how to find the last term in a perfect square trinomial.
Example of a perfect square trinomial:
$(a+b)^{2}=(a+b)(a+b)=a^{2}+2 a b+b^{2}$

Completing the Square

Do Now: Thinking back to the last semester about square root. How would you solve the equations below? (Be careful, there are two answers)
1.

$$
x^{2}=81
$$

2.

$$
5 x^{2}=80
$$

3.

$$
3 x^{2}=60
$$

What about $(x+2)^{2}=25$

Or $(x+1)^{2}=16$

Thursday/Friday

Name: \qquad Date: \qquad Period: \qquad
Note: Fill in the blank
We need to get our equation into the form

Let's try that with $x^{2}+10 x=11$

$$
x^{2}+10 x_{-------}=
$$

We need to find a number, that when added to $x^{2}+10 x$ will make a binomial squared

Divided 10 by 2 , and square it!
$(10 \div 2)^{2}=$ \qquad
And that is 25 . (Add that to each side)

$$
x^{2}+10 x+25=11+25
$$

Factor the left side:

$$
(x+5)^{2}=36
$$

Square Root each side. (\pm means positive or negative)

$$
\begin{gathered}
\sqrt{(x+5)^{2}=} \pm \sqrt{36} \\
x+5= \pm 6
\end{gathered}
$$

Now just subtract 5 from each side.

$$
\begin{aligned}
x+5 & =-6 \\
x & =-11 \\
x+5 & =6 \\
x & =1
\end{aligned}
$$

$$
x=1,-11
$$

Completing the Square

Solve by completing the square

1) $p^{2}+14 p-38=0$
2) $v^{2}+6 v-59=0$
3) $a^{2}+14 a-51=0$
4) $x^{2}-12 x+11=0$
5) $x^{2}+6 x+8=0$
6) $n^{2}-2 n-3=0$
7) $x^{2}+14 x-15=0$
8) $k^{2}-12 k+23=0$
